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Abstract

Subseasonal to seasonal forecasts have the potential to be a useful tool for managing

estuarine fisheries and water quality, and with increasing skill at forecasting conditions

at these time scales in the atmosphere and open ocean, skillful forecasts of estuarine

salinity, temperature, and biogeochemistry may be possible. In this study, we use a ma-

chine learning model to assess the predictability of column minimum dissolved oxygen

in Chesapeake Bay at a monthly time scale. Compared to previous models for dissolved

oxygen and hypoxia, our model has the advantages of resolving spatial variability and

fitting more flexible relationships between dissolved oxygen and the predictor variables.

Using a concise set of predictors with established relationships with dissolved oxygen,

we find that dissolved oxygen in a given month can be skillfully predicted with knowl-

edge of stratification and mean temperature during the same month. Furthermore, the

predictions generated by the model are consistent with expectations from prior knowl-

edge and basic physics. The model reveals that accurate knowledge or skillful forecasts

of the vertical density gradient is the key to successful prediction of dissolved oxygen,

and prediction skill disappears if stratification is only known at the beginning of the

forecast. The lost skill cannot be recovered by replacing stratification as a predictor

with variables that have a lagged correlation with stratification (such as river discharge);

however, skill is obtainable in many cases if stratification can be forecast with an error

of less than about 1 kg m−3. Thus, future research on hypoxia forecasting should focus

on understanding and forecasting variations in stratification over subseasonal time scales
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(between about two weeks and two months).
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1. Introduction1

Chesapeake Bay, a coastal plain estuary located along the Mid-Atlantic Bight, expe-2

riences extensive hypoxia and anoxia in the summer following the delivery of nutrients by3

the spring freshet and the establishment of strong density stratification (Newcombe and4

Horne, 1938; Taft et al., 1980; Officer et al., 1984). Although there is some evidence that5

hypoxia has been an occasional feature of the bay for centuries (Karlsen et al., 2000),6

many studies have identified a dramatic increase in the extent and severity of hypoxia as7

a result of increased nutrient loading over the last century (Officer et al., 1984; Karlsen8

et al., 2000; Hagy et al., 2004; Murphy et al., 2011). Other estuaries and coastal systems9

worldwide exhibit similar increases in hypoxia, primarily as a result of increases in fer-10

tilizer runoff and other anthropogenic nutrient inputs (Diaz, 2001; Diaz and Rosenberg,11

2008; Rabalais et al., 2010; Breitburg et al., 2018). In the future, climate change and12

sea-level rise have the potential to alter the intensity and frequency of hypoxia, both13

in Chesapeake Bay (Najjar et al., 2010; Irby et al., 2018) and globally (Rabalais et al.,14

2010).15

Extensive regulations have been implemented to reduce pollutants in Chesapeake16

Bay, including nitrogen and phosphorus, with the goal of improving water quality and17

reducing hypoxia (Linker et al., 2013; Shenk and Linker, 2013). Recently, there has been18

some evidence that water clarity and dissolved oxygen concentrations have improved19

(Zhang et al., 2018) and that coverage of submerged aquatic vegetation has expanded20

(Gurbisz and Michael Kemp, 2014; Lefcheck et al., 2018). However, historically progress21

has been slow (Boesch, 2006) and currently less than half of the bay area meets all water22

quality goals (Zhang et al., 2018).23
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While hypoxia and anoxia are nearly always present in some deep areas of Chesa-24

peake Bay during the summer months, both the timing of hypoxia development and25

the spatial extent of hypoxia can vary dramatically (Hagy et al., 2004; Scully, 2016b).26

The susceptibility of the bay to hypoxia and the large interannual variability of hypoxia27

driven by weather and climate variability pose challenges for water quality and marine28

resource management (Boesch et al., 2001; Testa et al., 2017). Skillful forecasts of future29

weather and climate have the potential to improve the management of water quality30

and fisheries; for example, subseasonal to seasonal scale forecasts of temperature can31

improve the effectiveness of fisheries management (Hobday et al., 2016; Tommasi et al.,32

2017). Similarly, Huang and Smith (2011) show that accounting for hypoxia improves33

management of brown shrimp in the Neuse River Estuary; when hypoxia is more severe,34

the optimal opening date of the fishery is earlier in the year.35

Statistical models have been developed for forecasting the volume of hypoxic water in36

Chesapeake Bay (Scavia et al., 2006; Liu et al., 2011; Murphy et al., 2011), and although37

these forecasts are regularly published online and have received attention from the media38

and general public (Testa et al., 2017), the forecasts are not currently considered in man-39

agement of Chesapeake Bay water quality or fisheries. One key limitation is that these40

forecasts predict overall hypoxic volume and provide no information about the spatial41

distribution of hypoxia. Accounting for spatial variability is an important component42

of ecosystem based fisheries management (Marasco et al., 2007), and resolving spatial43

variability is particularly important in Chesapeake Bay because the bay straddles two44

states (Maryland and Virginia) and has been divided into five categories for regulation45

of dissolved oxygen and water quality (Batiuk et al., 2009). Additionally, although pre-46

vious forecast models appear to have modest skill at predicting hypoxic volume, the47

models have not been thoroughly evaluated for predictive skill beyond the period of data48

used to fit the forecast models. Therefore, the development of skillful, spatially resolved49

subseasonal hypoxia forecasts is an essential step for aiding and improving management50

decisions.51

In this study, we assess the predictability of dissolved oxygen at a monthly time scale52

for many locations in Chesapeake Bay by combining a simple mechanistic set of predictors53

with flexible machine learning methods. Our objectives are to explore the upper bounds54
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of prediction skill (given perfect knowledge of the mechanistic drivers) and to identify55

key prediction bottlenecks. Previous forecasts of Chesapeake Bay hypoxia have relied on56

ordinary or multiple linear regression models (Murphy et al., 2011; Prasad et al., 2011;57

Testa et al., 2017) or on curves derived from idealized physical models (Scavia et al.,58

2006; Liu et al., 2011). Machine learning methods, however, have more flexibility to rep-59

resent nonlinearity, spatial variability, and seasonal changes in the response of dissolved60

oxygen to predictor variables, thus providing an opportunity for new insights. Several61

studies have used machine learning methods to predict hypoxia and other biogeochemical62

and water quality parameters in other estuaries and coastal systems. Park et al. (2015)63

used regression trees to estimate chlorophyll a given contemporaneous observations of64

nutrients and water temperature; they found that the regression trees were capable of65

representing seasonal changes in which inputs were predictive of chlorophyll concentra-66

tions. Thoe et al. (2014) compared the ability of a classification tree, an artificial neural67

network, and three regression methods to predict the presence of fecal indicator bacteria68

at Santa Monica Beach; they obtained the best performance with the classification tree69

method. Coopersmith et al. (2010) used the k-nearest neighbor (KNN) algorithm to70

produce one-day forecasts of hypoxia in Corpus Christi Bay. Coopersmith et al. (2010)71

also considered the use of regression trees, but the performance of the regression trees72

was worse than KNN. Tamvakis et al. (2012) found that model trees produced superior73

predictions of contemporaneous chlorophyll a compared to an artificial neural network74

and multiple linear regression, and Muhling et al. (2018) used model trees to predict sur-75

face temperature and salinity in Chesapeake Bay using projected atmospheric conditions76

from an ensemble of global climate models as predictors.77

To analyze the predictability of spatially resolved dissolved oxygen in Chesapeake Bay,78

we use a model tree method similar to Muhling et al. (2018). As Park et al. (2015) noted79

for regression trees, model trees are capable of representing seasonal changes in which80

inputs are predictive of the response variable; this is potentially useful in Chesapeake81

Bay because Scully (2016b) suggested that early summer hypoxia was driven primarily82

by biological processes and that physical influences on hypoxia became more important83

later in the summer. Also, as Muhling et al. (2018) noted, model trees are capable of84

extrapolating outside of the range of values in the training observations (although such85
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extrapolations should be treated with caution); this is potentially useful for using the86

forecast model for scenario simulations to predict the effect of climate change or nutrient87

loading reductions on hypoxia. In Chesapeake Bay, model trees and similar methods88

may be more useful than time series methods, such as autoregressive models, because89

the inter-monthly autocorrelation of dissolved oxygen is low (Section 4.2).90

A danger of machine learning methods is the temptation to include diverse predictors91

with dubious relationships to the variable being predicted. To avoid this, we focus on a92

distinct set of drivers that have established relationships with dissolved oxygen (Table 1).93

We begin by testing the predictability of dissolved oxygen under ideal conditions where94

we have perfect knowledge of the state of the mechanistic predictors in Table 1. Then, we95

reassess the skill when permutations of the predictors requiring forecasts—temperature,96

mean sea level and stratification—are only known at the beginning of the forecast period.97

This reveals stratification and, to a lesser degree, temperature, as key bottlenecks for98

forecasting hypoxia. We then discuss a) the accuracy of stratification forecasts required99

for skillful hypoxia forecasts, and b) the viability of replacing stratification as a predictor100

with a lagged relationship to river discharge.101

2. Methods102

To predict and forecast dissolved oxygen and hypoxia, we developed a machine learn-103

ing model that uses a model tree to predict the monthly mean, column minimum dissolved104

oxygen concentration (hereafter referred to as just dissolved oxygen or DO) at a given105

location. We refer to this model as a “mechanistic” model because the choice of pre-106

dictor variables in model was based on mechanisms that are known to influence DO in107

Chesapeake Bay. These predictor variables, the associated datasets, and the known con-108

nections to DO are summarized in Table 1. Based on common availability in all datasets,109

we used data from 1986 to 2017. These data were split into training and testing groups110

to fit and evaluate the model; the model was fit to the training dataset, which contained111

data from years 1986 to 2007, and the model was evaluated using the test dataset, which112

contained data for the last ten years of the record (2008 to 2017). The choice of years113

for training and testing does not have a substantial impact on the results; for example,114

using the first ten years of data as testing instead resulted in a similar model fit, and115
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although there were some differences in skill, our conclusions would not be significantly116

changed.117

Table 1: Variables used as inputs to the mechanistic dissolved oxygen model.

Abbreviation Input variable Data

source

Mechanism and references

L5 TN load from Susq. River,

total over previous 5 months

USGS Phytoplankton, correlated with river

discharge, estuarine circulation, and

stratification.

Wspring Mean wind along NE/SW

axis, Feb-Apr

NDBC Transport of phytoplankton biomass;

Lee et al. (2013).

T Column-mean temperature

anomaly, forecast month

CBP Solubility and oxygen sinks; Li et al.

(2015); Li et al. (2016).

MSL Mean sea level anomaly, fore-

cast month

PSMSL Vertical exchange time, estuarine circu-

lation, potentially correlated with strat-

ification; Hong and Shen (2012).

∆ρ Vertical density difference

anomaly, forecast month

CBP Mixing.

M Forecast month

H Forecast hour

D Profile bottom depth CBP

X Longitude CBP

Y Latitude CBP

2.1. Data sources and preprocessing118

Vertical profiles of temperature, salinity, and dissolved oxygen were obtained from the119

Chesapeake Bay Program (CBP) Water Quality Database (Chesapeake Bay Program,120

2018). All three variables were typically measured at 1 m intervals in each profile, and the121

measurements were typically taken bimonthly for each site during the warm season. We122

selected data only from sites that had frequent observations during May to September in123

the last 5 years of the training period (2003 to 2007) by requiring that a site have data for124
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at least 20 of the 25 months in this time frame. We did not include sites that were located125

in the upper reaches of some tributaries and that never experience hypoxia (defined here126

as column minimum concentration below 2 mg L−1), and we also did not include a127

cluster of sites in the Elizabeth River near Norfolk that have experienced hypoxia in the128

past. We assumed that variability in dissolved oxygen in these regions is driven by more129

localized factors, such as discharge from minor tributaries and point source pollution,130

compared to the bay mainstem factors considered herein.131

For each vertical profile, we calculated the column mean temperature and the column132

minimum dissolved oxygen concentration. We also obtained density from the tempera-133

ture and salinity profiles using the International Thermodynamic Equation Of Seawater—134

2010 (IOC, SCOR and IAPSO, 2010), and we calculated the density stratification as the135

difference between the density nearest the bottom and nearest the surface (so that a136

more positive value indicates a more stable density stratification).137

We subtracted the climatological mean values from the CBP data to prevent the138

strong seasonal cycles of dissolved oxygen, temperature, and salinity from overwhelming139

the interannual variability that we seek to predict. To subtract the climatology from a140

variable y at a site i, we fit a generalized additive model (Hastie and Tibshirani, 1986;141

Wood, 2006) with a smooth seasonal cycle and a constant mean:142

yij = si(DOYj) + βi + εij

where si is a cyclic cubic spline, DOYj is the day of year of the j-th observation, βi is the143

long-term mean, and εij is an independent, normally-distributed residual. A separate144

model was fit for each variable and site using the training dataset. The models were used145

to predict climatological mean values for each observation in both the training and testing146

datasets, and the fitted climatological values were subtracted from the observations to147

produce anomalies. Finally, anomalies were averaged at sites with multiple observations148

in a given month to produce a time series of monthly anomaly values for each site.149

We also calculated lagged values (the value from the previous month) of the mean150

temperature and density stratification anomalies. At each measurement site, all data (in-151

cluding non-lagged variables) were eliminated if there were no measurements during the152

previous month. After applying this restriction and the restrictions discussed previously,153

126 unique locations remained in the database. A text file providing the names and154
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coordinate information of these 126 locations is provided in the supporting information.155

The training dataset contained 11,810 vertical profiles, and the test dataset contained156

4,936 profiles.157

Data for the input of total nitrogen (TN) from the Susquehanna River were obtained158

from the United States Geological Survey (USGS) (Moyer and Blomquist, 2018). These159

data were produced by combining observations and the Weighted Regressions on Time,160

Discharge, and Season method (Hirsch et al., 2010). As input to the model, we used161

the total nitrogen loading summed over the previous five months. For a June hypoxia162

prediction, the previous five months are January through May, which matches the period163

used in other studies (Scavia et al., 2006; Liu et al., 2011; Murphy et al., 2011; Testa164

et al., 2017).165

Observed wind speeds and directions were obtained from the National Data Buoy166

Center for Thomas Point, MD, a location in the upper Chesapeake Bay near Annapolis,167

MD. Winds were measured at 18 m above mean sea level. As a predictor in the models,168

we included mean wind speed along the northeast-southwest direction, averaged over169

February to April. Lee et al. (2013) suggested that winds along this axis influence the170

transportation of phytoplankton biomass. Because the Thomas Point station measured171

winds for only six days during the February to April period of 2010, the mean NE-SW172

wind for 2010 was determined from the value observed at Rappahannock Light, a station173

with similar anemometer elevation (16.9 m) located over water closer to the bay mouth.174

Other periods of missing data for the Thomas Point station were shorter, and the mean175

February-April wind was determined from all available data from the station.176

Monthly mean sea level anomaly at Kiptopeke Beach was obtained from the Perma-177

nent Service for Mean Sea Level (Holgate et al., 2013). We chose this location because178

the data is available for the same time period as the other variables and contains less179

missing data than most other sites in the bay. Months that were missing in the dataset180

were imputed with linear interpolation.181

2.2. Model for column minimum dissolved oxygen182

The machine learning model for dissolved oxygen was built using a model tree (Quin-183

lan, 1992) as implemented and extended by the Cubist package (Kuhn et al., 2018) for184

R (R Core Team, 2017). In the model tree method, the training data are iteratively185
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partitioned into groups based on the values of the predictor variables, forming a tree186

that contains a node for each division of the data. A multiple linear regression model is187

developed for the data at each node of the tree, and the final predicted value is generated188

from a combination of the regressions along the path of the tree traversed for the given189

predictors (Quinlan, 1992; Kuhn et al., 2018). Model trees are controlled by a parameter190

for the number of “rules”, which sets the maximum number of partitions of the data191

included in the model. Cubist allows the addition of “neighbors” to the model, in which192

case the prediction for a given set of predictors is adjusted by the difference between193

the actual and predicted values for a specified number of neighboring, similar predictors194

(Quinlan, 1993). Cubist also includes the option to use “committees”, in which case195

the final prediction is an average of a specified number of model trees that iteratively196

attempt to balance errors produced by other trees (Kuhn et al., 2018).197

We determined the approximate optimal value for each of the three parameters by198

searching a 4 × 4 × 4 grid containing 25, 50, 100 and 200 rules; 1, 10, 25, and 50199

committees; and 0, 1, 2, and 5 neighbors. Each of the 64 parameter sets was evaluated200

using 10-fold cross-validation, repeated 10 times, with the training dataset. The optimal201

set of parameters, which minimized the mean squared error of predicted DO over all202

stations, was 100 rules, 50 committees, and 0 neighbors.203

2.3. Model evaluation204

The model predictions of dissolved oxygen anomaly were compared with the obser-205

vations by calculating the Pearson correlation coefficient, the mean bias, and the root206

mean square error for each site using predictions from the test period. After clustering207

the sites and calculating cluster mean dissolved oxygen (Section 2.5), we also created208

target diagrams (Jolliff et al., 2009), which split the root mean square error (RMSE) into209

two components: bias, and unbiased (centered) RMSE. These components are plotted210

on the vertical and horizontal axes, respectively, so that the total RMSE is equivalent to211

the distance from the origin of the target diagram. The plots are normalized by divid-212

ing by the RMSE of climatological forecasts during the training period, so that a total213

RMSE below 1 indicates skill relative to a forecast of the training period climatology. We214

evaluate skill relative to climatology rather than persistence because the inter-monthly215

autocorrelation of dissolved oxygen is low (Section 4.2).216
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2.4. Model sensitivity217

To verify that the model tree is physically reasonable and to determine the effect of218

each input variable and how the model output is ultimately sensitive to the inputs, we219

visualized the effects of individual terms in the model using plots of individual condi-220

tional expectations (ICE) (Goldstein et al., 2015) and the average of the ICEs, known221

as partial dependence (Friedman, 2001). These plots are commonly used to visualize222

models where the functional form of the model is not easily interpretable. Following223

Goldstein et al. (2015), the partial dependence is fs = Exc [f(xs,xc)], where x is the224

matrix of predictor variables, s denotes a set of one or more predictor variables for which225

the partial dependence is calculated, and c is the compliment of this set (the remaining226

predictor variables). In other words, fs gives the effect of the variables in s averaged227

over the other predictor variables. To calculate the partial dependence from the actual228

data and model, fs is estimated as229

f̂s =
1

N

N∑
i=1

f̂(xs,xci)

where f̂ is the predicted value from the model and i denotes one of the N observations.230

To reduce computational costs, we calculated f̂s for one variable at a time and for 41231

evenly spaced values spanning the minimum and maximum values of s observed during232

the training period. Additionally, we plotted the individual conditional expectations,233

which are simply the N curves of f̂ . For a given plot, all curves were standardized by234

subtracting the value of the curve at the minimum value of s, so that every line originates235

at zero at the minimum value of s. This allows an easier comparison of the trajectories236

of the ICE curves as the value of s is increased.237

We also calculated the importance of each predictor variable in the mechanistic model.238

For a given variable, the importance was determined as the percentage of the total number239

of splits and regressions in the tree where the variable was used (Kuhn et al., 2018). This240

provides a simple measure of how important each variable is; however, the output from a241

model tree is also determined by the coefficients in each regression model along the tree,242

and this is not captured by the importance metric.243
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2.5. Station clustering244

To summarize the ability of the model to predict dissolved oxygen concentrations245

in different regions of the Bay, we grouped the CBP stations into eight clusters based246

on location and the percent of observations between May and September with hypoxia247

(or prevalence of hypoxia) (Figure 1). We first placed all stations where hypoxia never248

occurred into one cluster. Then, stations from the tributaries on the western side of the249

bay (Patuxent, Potomac, Rappahannock, and York Rivers) were assigned to clusters for250

their respective tributaries. Finally, stations in the mainstem (including eastern shore251

tributaries, which are shorter in length and have fewer stations than those on the western252

shore) were grouped into three clusters by applying k-means clustering to the latitude253

and prevalence of hypoxia over all months between May and September in the training254

period for each station. This neatly groups the stations into a “core hypoxic” region255

that experiences frequent hypoxia, an “upper bay” cluster that includes stations in the256

northern half of the bay that experience occasional hypoxia, and a “lower bay” cluster257

that includes stations in the southern half of the bay that also experience occasional258

hypoxia.259

2.6. Assessing the potential for forecasts260

The analyses described above assessed prediction with perfect knowledge of contem-261

poraneous conditions. In a forecast setting, however, the values of essential predictors262

are not known precisely. We thus considered three experiments to assess the potential for263

skillful forecasts of future dissolved oxygen concentrations. First, we assessed whether264

the contemporaneous variables in the mechanistic model (mean temperature anomaly,265

stratification anomaly, and mean sea level) can be replaced with other variables that266

are known in advance. We fit this “lagged” model by replacing the contemporaneous267

variables in the mechanistic model with the values observed during the previous month.268

Second, from the results of the core mechanistic prediction analysis (Section 3.2),269

we found that accurate knowledge of stratification is the key to skillful predictions of270

dissolved oxygen in Chesapeake Bay. We therefore fit a “correlated” model by replacing271

stratification as a predictor with lagged river discharge variables that have a correla-272

tion with stratification. For this model, daily streamflow for the Susquehanna River at273
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Figure 1: (a) Observed prevalence of hypoxia during the model training period. Black “x”s indicate

points where hypoxia was never observed, and squares indicate points where hypoxia was always ob-

served. Circles indicate values between these extremes. (b) Cluster assigned to each station based on

geographical position and prevalence of hypoxia during May to September.
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Conowingo, MD, the Potomac River near Washington, D.C., and the James River near274

Richmond, VA were obtained from the USGS. Together, these rivers represent nearly 80%275

of the typical freshwater discharge to the bay (Boicourt et al., 1999). The streamflow276

data were averaged monthly, and streamflow anomalies were calculated by subtracting277

the 1986 to 2007 means for each calendar month. Finally, lagged streamflow anoma-278

lies were calculated by taking a rolling average of the anomalies over the previous three279

months.280

Lastly, to assess how accurate stratification forecasts need to be to support skillful281

hypoxia forecasts, we quantified the degradation of prediction skill in response to im-282

perfect stratification forecasts with increasing levels of noise. We ran simulations where283

Gaussian random noise with zero mean and various levels of variance was added to the284

observed stratification during the test period. The simulations assumed perfect spatial285

error correlation (i.e. in a given simulation, year, and month, all locations have the same286

error). 100 simulations were conducted for each level of error variance. For each simula-287

tion, we used the mechanistic model to predict dissolved oxygen using the temperature,288

mean sea level, spring winds, and nitrogen loading from the test dataset along with the289

perturbed stratification data. Then, for each region and calendar month, we calculated290

the average RMSE over the 100 simulations for each level of variance.291

3. Results292

3.1. Dissolved oxygen hindcast with mechanistic predictors293

With the stratification, mean temperature, and other values observed during the294

prediction month as inputs, the model tree produces skillful predictions of minimum295

dissolved oxygen anomalies during the test period. The model predictions have at least296

moderate correlation with the observations at the majority of sites: over all months, 54%297

of correlation coefficients are above 0.5 (Figure 2a). A few poor or negative correlations298

are found in central and lower bay along the thalweg. Except at a few stations, bias is299

low during the test period (Figure 2b). Over all sites and months, the predictions during300

the test period are essentially unbiased, with a mean bias of -0.07 mg L−1 and the 25th301

to 75th percentiles spanning -0.3 to 0.2 mg L−1. The bias does tend to become more302

negative (i.e. model predictions are too low) as the months progress from May (mean303
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bias 0.07 mg L−1) to August (mean -0.2 mg L−1), and several stations along the deep304

channel also have a large negative bias in September. Despite the biases, the overall305

model errors are reasonable, with predictions for 70% of all stations and months having306

lower RMSEs than climatological predictions (Figure 2c). RMSEs are generally low near307

the mouth of the bay and in some of the tributaries, with slightly higher errors present308

in the center of the bay. Despite low errors near the mouth of the bay, many points there309

are not skillful relative to climatology. This suggests that the interannual variation is low310

at these points, potentially as a result of exchange with saturated water from the shelf.311

Consistent with results from previous metrics, many points along the thalweg are also312

not skillful relative to climatology. In the tributaries, despite sometimes having higher313

RMSEs compared to average, most points are skillful relative to climatology. Overall,314

65% of RMSEs are below 1 mg L−1, and the median RMSE is 0.8 mg L−1. To put these315

values in context, we have included a figure of the mean minimum DO concentration for316

each station and month in the Supporting Information (Figure S1).317

When aggregated to cluster means, the model predictions are generally skillful com-318

pared to the training period climatology (Figure 3), as indicated by points inside the319

solid circles. Overall, skill is highest in June through August, when all regions have320

lower errors than the climatological reference forecast. Most of the model predictions321

have lower variances than the observations (indicated by points to the left of the origin).322

Because the model predictions still have reasonable correlation with the observations323

(Figures 2a and 3), the model predictions are essentially a smoothed representation of324

reality. The core hypoxic cluster has lower skill than other clusters due to both larger325

biases than in other regions and a failure to capture the weak variability of dissolved326

oxygen in this region. However, because severe hypoxia is nearly always present during327

the summer months in this region, the lower skill would have a limited impact on pre-328

dicting the presence or absence of hypoxia. Predictions for the lower bay are skillful for329

May through August; however, skill declines significantly in September.330

3.2. Predictor importance and sensitivity331

On average, the model dissolved oxygen predictions are most sensitive to the vertical332

density stratification (Figure 4). Consistent with physical expectations, the marginal333

effect of increased stratification is to significantly reduce the concentration of dissolved334
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Figure 2: Skill of the main dissolved oxygen model at the station level: correlation coefficient (a), bias

(b), and root mean square error (c). Solid points in panel (c) indicate lower errors than a climatological

forecast.
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Figure 3: Target diagrams (Section 2.3) for cluster-mean predicted dissolved oxygen. Points inside

the circle are considered skillful relative to the training period climatology. Points with a negative

standardized centered RMSE have lower interannual variability than the observations.
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oxygen. The ICE plots suggest that the marginal effect of stratification is stronger for335

some conditions or locations than others. A closer investigation showed that points where336

stratification has a large marginal effect in the model are typically shallow (not shown).337

This could be interpreted as an effect of the density gradient (an equal density difference338

over a shallower depth implies a higher, more stable density gradient) or a result of the339

lower variability of minimum dissolved oxygen in deeper regions.340

Warmer water is modeled to have a lower dissolved oxygen concentration, which is341

consistent with the decreased oxygen solubility and increased biological activity associ-342

ated with warmer water. Unlike stratification, the effect of temperature is not a strong343

function of depth. The remaining variables have relatively weak effects on dissolved oxy-344

gen on average, although the individual conditional expectations show a fair amount of345

variability and suggest that interactions with other variables are present. Mean sea level346

and nutrient loading have weak positive effects on DO on average, while stronger winds347

from the northeast (positive Wspring) have a weak negative effect. Although all three co-348

ordinate variables (depth, latitude, and longitude) have zero partial dependence because349

the model was fit to anomalies, the ICE plots reveal significant interactions with other350

variables, especially for depth and latitude. In addition to the already noted interaction351

between stratification and depth, interactions with latitude are not surprising: because352

Chesapeake Bay is roughly oriented along the north-south axis, most along-channel vari-353

ations, including variations in tidal amplitude and mean salinity, can be described as354

functions of latitude. The ICE plots for both latitude and longitude also diverge around355

38.5◦ and -76◦, respectively. This region typically has both low dissolved oxygen and356

frequent hypoxia along the center channel and higher dissolved oxygen and infrequent357

hypoxia adjacent to the channel and in the Choptank River (Figure 1). The divergence358

in the ICE plots suggests that the model has learned the difference between these two359

regions.360

The predictor importance metric (Figure 5), which is based on the percent of the361

splits and regressions in the model tree in which a given variable is used, is generally362

consistent with the sensitivities revealed in the ICE plots. In the mechanistic model,363

density stratification remains the single most important variable for predicting dissolved364

oxygen. Latitude and depth are the two most important coordinate variables. Mean365
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Figure 4: Individual conditional expectations (black lines) and partial dependence (red lines) for several

of the predictors in the mechanistic model. Note that the y-axis for each plot is different.
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temperature anomaly also appears in just over half of the splits and regressions, while366

sea level, winds, and nitrogen loading are relatively unimportant.367

3.3. Limits of predictability368

Because the mechanistic model results show that knowledge of stratification is the369

key to skillful prediction of dissolved oxygen, we consider several modifications to the370

model (detailed in Section 2.6) to explore the limits of predictability of DO and to371

potentially make the model useful in a forecast setting where stratification is not perfectly372

predictable. First, we create a “lagged” model by replacing all contemporaneous variables373

in the model (mean temperature anomaly, stratification anomaly, and mean sea level)374

with the values observed during the previous month. This model has significantly reduced375

skill compared to the mechanistic model (Figure 6); the predicted mean DO for all376

regions has a higher error than climatology in July, and errors in the remaining months377
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are centered around climatology, with predictions in some regions having comparatively378

higher skill and predictions in other regions having lower skill. However, the lagged model379

does improve the mechanistic model prediction skill in a few cases, including in the upper380

bay and core hypoxic regions in May and in the core hypoxic region in September.381

Second, in Figure 6, we test a “correlated” model by replacing the stratification382

predictor in the mechanistic model with discharge from three major rivers that have383

a lagged correlation with stratification. This model produces a modest improvement384

over the lagged model in many regions. The correlated model has some skill in many385

regions in May and September, and it improves on the mechanistic model predictions386

in the upper bay and core hypoxic regions in these months, suggesting there is some387

relationship between lagged river discharge and dissolved oxygen during the fringes of388

the hypoxia season. However, in nearly all regions during the main summer months, the389

mechanistic model performs significantly better.390

Overall, neither the correlated model nor the lagged model appear to be viable re-391

placements for the mechanistic model, with the possible exception of May and September392

in the core hypoxic and upper bay regions. This shows that stratification is the key to393

successful forecasts. In Figure 7, we examine how accurately stratification must be known394

to allow skillful DO forecasts. Results vary by month and region, but in general the stan-395

dard deviation of stratification anomaly errors must be less than 1 kg m−3 for dissolved396

oxygen forecasts to be skillful in the majority of the regions (assuming the mean error is397

zero, i.e. the stratification forecasts are unbiased). Although seemingly small, this error398

is comparable to the interannual standard deviation of the stratification anomaly (Figure399

S2). Therefore, skillful dissolved oxygen forecasts would likely be possible if skillful fore-400

casts of stratification were also possible. Predictions for DO in the upper bay and never401

hypoxic regions are more sensitive to errors in stratification than predictions in other402

regions; however, these results also have lower interannual variability of stratification, so403

the potential for predictability remains.404
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Figure 6: Root mean square error for cluster-mean dissolved oxygen during the test period. Error

is normalized by the error of a prediction of climatological (training period) mean dissolved oxygen;

negative values indicate errors that are lower than the climatological forecast errors. “Mechanistic”

denotes predictions using the mechanistic model; “lagged” indicates predictions from a model where the

contemporaneous variables in the mechanistic model are replaced with values observed in the previous

month; “correlated” denotes predictions from a model similar to the mechanistic model but with the

stratification anomaly replaced with correlated variables (lagged streamflow anomalies).
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4. Discussion405

4.1. Summary and comparison with previous studies406

The mechanistic model used a concise set of predictor variables that were identified in407

previous studies as having a potential relationship with dissolved oxygen and hypoxia in408

Chesapeake Bay. Of the five time-varying variables in the model, we found that stratifi-409

cation and temperature had the largest influences on DO, while nutrient loading had the410

smallest effect. In this subsection, we summarize our findings on the effects of stratifica-411

tion, temperature, and nutrient loading and compare them with the results of previous412

studies. The comparison increases our confidence in our finding that stratification and413

temperature control the interannual variability of dissolved oxygen—particularly since414

our model, which was built on observations but with no prior assumptions about the415

form of the relationship between dissolved oxygen and the predictor variables, produced416

results that are broadly similar to other studies that have used different methods and417

assumptions.418

4.1.1. Stratification is the strongest predictor of dissolved oxygen419

The mechanistic model showed that, of the variables considered, stratification is most420

predictive of dissolved oxygen. This is in agreement with the numerical model results in421

Cerco and Noel (2013); they found that stratification was the only significant predictor422

of bottom DO in the deeper waters of Chesapeake Bay. Our result is also partially423

consistent with the study of observations by Murphy et al. (2011). Murphy et al. (2011)424

found that stratification had a larger influence than TN load on early July hypoxic and425

anoxic volumes. In late July, however, Murphy et al. (2011) found that stratification426

had a negligible influence on hypoxia and anoxia, but stratification during the previous427

period (early July) had about the same influence on anoxic volumes as TN load. These428

findings of a strong correlation between DO and stratification are in contrast to Wang429

et al. (2015), who found that variability in nutrient loading was primarily responsible for430

interannual variability of anoxic volume. However, Wang et al. (2015) compared anoxic431

volume over the main bay with stratification observed at a single site (CB4.1C), whereas432

we have compared stratification measured at each site with concurrent dissolved oxygen433

measurements. Compared to Wang et al. (2015) and the other cited studies, we have also434
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considered dissolved oxygen concentrations over a broader area including the tributaries435

and shallow water monitoring stations.436

4.1.2. Water temperature has a significant effect on dissolved oxygen437

The model in this study identified a stronger and more consistent link between warmer438

water and lower dissolved oxygen concentrations than previous studies have. Wang et al.439

(2015) found a weak negative correlation between observed summer mean bottom wa-440

ter temperature and anoxic volume. On the other hand, Hagy et al. (2004) found a441

weak positive correlation between the date of anoxia onset and the spring mean bottom442

temperature. Also using observed data, Scully (2016b) found essentially no correlation443

between summer mean sea surface temperature at Thomas Point and bay-wide hypoxic444

volume; however, using model simulations, Scully (2016b) found a weak positive corre-445

lation between temperature and hypoxic volume.446

A possible reason that our model identified a strong and consistent link between447

temperature and DO is that it used column mean water temperature, which is largely448

independent of density stratification, as a predictor rather than using surface or bottom449

temperature. Modeling studies that applied long-term perturbations to atmospheric450

temperatures, and therefore modified the column mean temperature, have found posi-451

tive relationships between oxygen and temperature that are similar to this study. For452

example, Scully (2013) perturbed the seasonal cycle of atmospheric temperature, result-453

ing in a 2 ◦C change in water temperature and a 25% larger hypoxic volume. Irby et al.454

(2018) analyzed climate change simulations and concluded that the decrease in bottom455

DO caused by temperature change will be greater than the changes in bottom DO caused456

by other climate changes. Irby et al. (2018) found that the effect of temperature on solu-457

bility was responsible for 65-85% of the total effect of temperature on DO. Using observed458

data, Wang et al. (2015) also identified a weak positive correlation between atmospheric459

temperature and anoxic volume.460

A second possible reason for differences between our study and some of the cited461

previous studies is that we included data from the tributary and shallow water regions462

that other studies neglected. Muller et al. (2016) found that hypoxia in two smaller463

tributaries, the Severn and South Rivers, was driven by temperature and temperature464

stratification more than by salinity and salinity stratification. However, nearly all of the465
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individual conditional expectations in Figure 4 show that increased temperature lowers466

DO concentration, so the effect of temperature is consistent across different stations and467

regions.468

4.1.3. Nitrogen loading explains a small portion of recent oxygen variability469

The mechanistic model produces only a weak sensitivity of dissolved oxygen to total470

nitrogen loading over the study period, which is consistent with previous studies. Hagy471

et al. (2004) fit a linear regression to predict July hypoxic volume from January to472

May nitrate loading; they obtained an R2 value of 0.17. Murphy et al. (2011) fit linear473

regressions to predict hypoxic volume from January to May total nitrogen loading and474

obtained R2 values of only 0.08 and 0.21 for early and late July hypoxic volume. With475

only a simple model for oxygen where the oxygen consumption rate is fixed and does not476

respond to nutrient loading and biological activity, numerical models are still capable477

of skillfully simulating interannual variability in dissolved oxygen and hypoxic volume478

(Scully, 2010, 2013, 2016b; Irby et al., 2016). Scully (2016b) noted that despite the lack479

of any response to nitrogen loading in the model, the model nevertheless produced a480

strong correlation between nitrogen loading and hypoxic volume, which Scully (2016b)481

attributed to the increased stratification caused by higher discharge.482

It is important to note that although nitrogen loading has only a weak effect on dis-483

solved oxygen in our model, this does not mean that efforts to reduce nitrogen loading484

to the bay are not worthwhile. First, of the ten predictor variables in the mechanistic485

model (Table 1), nitrogen loading is the only variable over which humans have some486

degree of control. Second, the recent interannual variability of nitrogen loading is small487

compared to the targeted reduction of over 40% (Cerco and Noel, 2013; Linker et al.,488

2013). In simple simulations using the mechanistic model with nitrogen loading uni-489

formly reduced by 40% over the training period, predicted dissolved oxygen increased490

significantly, especially over the core hypoxic region (not shown).491

4.2. Drivers of oxygen variability not captured by the model492

The ability to predict dissolved oxygen using the model in this study is likely to493

be limited by short-term variability that is not captured in the model. Observations494

have shown that DO concentrations can fluctuate by several mg L−1 over time scales495
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as short as 5 to 15 minutes (Breitburg, 1990; Sanford et al., 1990). These fluctuations496

are driven by several physical factors, including barotropic tides (Breitburg, 1990) and497

oscillations of the pycnocline caused by internal tides and winds (Sanford et al., 1990).498

The short time scales associated with these events, as well as the role of advection from499

nearby regions, make these fluctuations essentially unpredictable using the model in this500

study. Because the minimum dissolved oxygen and the stratification and temperature501

predictors are typically derived from the average of two vertical profiles per month for502

each measuring site, extreme short-term variability could have also obscured the effects503

of the predictors in the training and testing data.504

Modeling studies (Scully, 2010; Li and Li, 2012) and observations (Scully, 2016a)505

have also shown the role of winds in driving oxygen variability over time scales of a few506

days. Some aspects of this variability could be captured in the mechanistic model; for507

example, stratification also responds to these wind events (Scully et al., 2005; Li and508

Li, 2011; Xie and Li, 2018). However, when we constructed models that replaced the509

stratification predictor with various combinations of wind speed and direction averaged510

over the forecast month, the models did not achieve significant skill at predicting dissolved511

oxygen. We did not examine skill using wind predictors aggregated over shorter time512

scales because these winds are essentially unpredictable more than a few days in advance.513

An additional potential source of variability and predictability that would not be514

captured by the model in this study is persistence of dissolved oxygen concentrations515

from the previous month. However, the inter-monthly correlation of dissolved oxygen516

in Chesapeake Bay is typically low (Figure S3). Over all months and regions, the only517

correlation coefficient above 0.5 is between August and September DO in the lower bay518

region. There is some evidence for higher correlation between months near the beginning519

and end of the hypoxia season (May—June and August—September). However, even520

in these months the correlation coefficients are typically between 0.2 and 0.4, and in521

other months the coefficients are even lower. Not surprisingly, using the minimum DO522

concentration observed during the previous month as a predictor in the model did not523

increase the prediction skill.524

26



4.3. Potential changes in the relationship between oxygen and predictor variables over525

time526

The suitability of the machine learning model for predicting future conditions could527

be restricted by the potential for nonstationarity in the response of oxygen to the forcing528

variables. For example, some estimates have found that the amount of summer hypoxia529

produced for a given amount of spring nitrogen loading nearly doubled during the study530

period (Hagy et al., 2004; Testa and Kemp, 2012). Observations also indicate that531

hypoxic volumes are increasing in the early summer, but volumes are decreasing in the532

late summer and hypoxia is breaking up earlier (Murphy et al., 2011). Given the trends533

in temperature, mean sea level, stratification, and other physical forcings (Murphy et al.,534

2011; Du et al., 2018), identifying the cause of the nonstationarity has been challenging535

and several hypotheses have been proposed.536

In simulations with numerical models, a trend towards earlier development of hypoxia537

is consistent with the effect of warmer water (Irby et al., 2018). In this case, it would538

be possible to capture this effect with the mechanistic model used here. Murphy et al.539

(2011) suggest that an increasing trend in the strength of stratification explains some of540

the nonstationarity in hypoxia, which would also be captured by the mechanistic model.541

However, Testa and Kemp (2012) and Testa et al. (2018) proposed that these trends are542

a result of changes in nitrogen cycling in the bay as a result of long term hypoxia, which543

would not be captured by the model used in this paper.544

In the mechanistic model, biases became negative during the test period from May545

to August, especially in the core hypoxic and lower bay regions (Section 3.1). This is546

consistent with hypoxia breaking up earlier in the test period than during the training547

period, and suggests that the causes of the earlier breakup are not captured by the548

predictors included in the mechanistic model. Despite this potential nonstationarity, the549

model predictions were still skillful compared to climatology during the test period, which550

suggests that potential nonstationarity will not have a severe impact on model predictions551

for the near future. Furthermore, as additional observations are collected, the model552

can be adapted to any nonstationarity by including these observations and adding any553

variables that are discovered to be causing changes in dissolved oxygen concentrations.554
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4.4. Comparison of machine learning and other models555

While it was not our objective to conduct a comprehensive intercomparison of different556

methods for modeling dissolved oxygen, in this section we briefly discuss what our work557

shows may be advantages and disadvantages of the modeling approach used in this study558

compared to both simpler linear regression models and more complex numerical models.559

Compared to simpler linear regression models, model trees and other machine learn-560

ing methods have a number of potential advantages. For example, the model trees used561

in this study were able to model dissolved oxygen in different months by including the562

calendar month as a predictor variable, which was used by the model tree algorithm as a563

criterion for dividing the data and fitting different regressions. Some studies using linear564

regression models have adopted a similar, but manual, approach by creating multiple565

models for different months (e.g., Testa et al. (2017)). Unlike linear regression models,566

model trees and many other methods are capable of fitting complex and nonlinear rela-567

tionships between the predictors and the variable being predicted. These advantages can568

lead to improved prediction skill over linear regression; for example, when we ran simple569

experiments using a multiple linear regression model with the same predictors as the570

mechanistic model, the linear regression model had lower skill in the majority of cases.571

However, complex machine learning models do have disadvantages compared to linear572

regression. The complex models can be much less interpretable, and the larger number573

of parameters in the complex models requires the availability of more data for training.574

Although machine learning models can be complex, they still have advantages over575

even more complex numerical biogeochemical models. One clear advantage is computa-576

tional cost: once optimal parameters have been found using cross-validation (which takes577

a few hours on a quad core computer), the model tree used in this study can be trained578

and used to predict years of data in a few seconds. By comparison, we have used a 3D579

numerical model of Chesapeake Bay in other research that requires over an hour to sim-580

ulate a single month using a similar computer. A second advantage is the fewer number581

of parameters and the simpler process for learning these parameters. One disadvantage582

is that numerical models, which are rooted in fundamental physical principles, are more583

reliable when extrapolating beyond the range of historically observed conditions (for ex-584

ample, when simulating the effects of climate change). Numerical models also provide585
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predictions of multiple variables simultaneously and allow an easier understanding of the586

physical reasoning behind the predictions. Overall, the mechanistic model tree appears587

to have skill that is comparable to the skill that Irby et al. (2016) obtained in a compar-588

ison of hindcast simulations from coupled numerical biogeochemical models, although a589

more detailed comparison is needed.590

5. Conclusions591

We developed a machine learning model to forecast and predict spatially explicit min-592

imum dissolved oxygen in Chesapeake Bay at monthly time scales. The model results593

show that accurate knowledge of density stratification is the key to skillful predictions of594

dissolved oxygen. We developed two alternative models that replaced density stratifica-595

tion with other predictor variables, and neither alternative model was skillful enough to596

be a viable replacement for the mechanistic model. This suggests that although the mech-597

anistic model is capable of skillfully at predicting dissolved oxygen, accurate forecasts598

of stratification are necessary to use the mechanistic model to forecast future dissolved599

oxygen.600

Even if machine learning models like the one used in this study are not capable601

of standing alone as forecast models, they have a number of potential uses, including602

serving as replacements for complex and expensive biogeochemical model components in603

a numerical ocean model capable of predicting stratification. With significantly reduced604

computational costs, additional numerical model ensembles can be run, which will likely605

increase the accuracy of both subseasonal forecasts and decadal scale climate simulations.606
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